
Physics GRE Summary

October 18, 2011

General Tips

• Pick moderate statembents. Extreme statements are usually wrong.

• Use Taylor expansion to deal with extreme cases, e.g. hν ≪ kT , ehν/kT ≈ 1 + hν
kT .

• When knowing L2 value, be careful to calculate l from ~
2l(l+ 1), two solutions.

• Conservation of momentum (including angular momentum) should be checked before conservation of
energy.

• Be careful about dimension of the problem, e.g. in 3D, radial wave, P =
´

|ψ|2d~r =
´

|ψ|24πr2dr

• Read underlined words carefully.

• Calculate T 4 carefully.

• Don’t think too hard, the questions are easy enough to be solved in 2 minutes.

• Use method of elimination.

• Dimensional analysis is always useful.

• Usually order of magnitude calculation is good enough.

• In general, F = −∇(potential energy), but in E&M notice V stands for potential, not potential energy,
so F = −∇(q · potential)

• Usually it is convenient to set h = ~ = c = · · · = 1, but if ans differs from choices, that’s a signal we
need to keep them.

• When you get stuck, take limits

• If some experimenter is involved in the question, it is usually a failed experiment.

• Things to work on

1 Classical Mechanics

• A worked example on velocity and acceleration in a curved path in a a plane: (the idea is to skillfully
use d(AB) = AdB +BdA. This applies to change of momentum as well.)

r̂ = î cos θ + ĵ sin θ, θ̂ = −î sin θ + ĵ cos θ

v̂ =
d(Rr̂)

dt
=
dR

dt
r̂ +R

dr̂

dt
= Ṙr̂ +Rωθ̂

Similarly,
~a = (R̈ −Rω2)r̂ + (Rθ̈ + 2Ṙθ̇)θ̂
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• Firing rocket
(vg − v)dM + d(MV ) = 0

M is rocket mass, v is speed, vg is relative speed of the waste fired out.

• Bernoulli’s equation

P +
1

2
ρv2 + ρgy = const

(conservation of energy)

• Torricelli’s Theorem: The outlet speed is the free-fall speed. For a barrel with water depth d, an outlet
at base has horizontal flow speed v =

√
2gd.

• Stoke’s law: viscous drag is 6πηrsν.

• Poiseille’s Law:

∆P =
8µLQ

πr4

where L is length of tube, Q is volume rate. This describes viscous incompressible flow through a
constant circular cross-section.

• Kepler’s laws.

– An orbiting body travels in an ellipse

r(θ) =
a(1− e2)

1 + e cos θ

– “A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.”

d

dt

(

1

2
r2θ̇

)

= 0

or
dA

dt
=

1

2
r2θ̇ = constant

– “The square of the orbital period of a planet is directly proportional to the cube of the semi-major
axis of its orbit.”

P =
A

dA/dt
= 2

√

µ

R
R3/2 P 2 ∝ R3

or
P 2

a3
=

4π2

MG

• Coriolis force:
~F = −2m(~ω × ~v)

• Diffusion: Fick’s law. The diffusion flux is given by

~Jr = −D∇nφ

• Frequency of a pendulum of arbitrary shape:

ω =

√

mgL

I
T = 2π

√

I

mgL

where L is the distance between the axis of rotation and the center of mass.
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• Hamiltonian formulation:

H =
∑

i

piq̇i − L, ṗ = −∂H
∂q

, q̇ =
∂H
∂p

• Circular orbits exist for almost all potentials. Stable non-circular orbits can occur for the simple
harmonic potential and the inverse square law.

• Orbit questions:

Veff(r) = V (r) +
L2

2mr2

For a gravitational potential, V (r) ∝ 1
r . The total energy of an object

E =
1

2
mv2 + Veff

E < Vmin gives a spiral orbit, E = Vmin gives a circular orbit„ Vmin < E < 0 gives an ellipse, E = 0 is
a parabolic orbit, and E > 0 has a hyperbolic orbit.

• If we want to approximate the equation of motion as a small oscillation about a point of equilibrium
V ′(x0) = 0 we can Taylor expand to get

V (x) = V (x0) +
1

2
V ′′(x0)(x − x0)

2

and then get the force

F = −dV
dx

= −V ′′(x0)(x − x0)

so that we can approximate small oscillations has harmonic oscillations with k = V ′′(x0) and

ω =

√

V ′′(x0)

m
.

2 Electromagnetism

• Resistance is defined in terms of resistivity as

R =
ρL

A

• Faraday’s laws of electrolysis

– The mass liberated ∝ charge passed through

– Mass of different elements liberated ∝ atomic weight/valence

m =
QA

Fv

where v is valence, A is atomic weight in kg/kmol, F = 9.65× 107C/kmol (Faraday’s constant)

• Parallel plate capacitor C = ǫ0A/d or ǫA/d for a dielectric. For a spherical capacitor,

C =
4πǫ0ab

a− b

• In charging a capacitor,
q = q0(1− e−t/RC)

discharging
q = q0e

−t/RC
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• Cyclotron/magnetic bending

r =
mv

qB

• Torque experienced by a planar coil of N loops, with current I in each loop.

τ = NIAB sin θ

where θ is the angle between B and line perpendicular to coil plane:

~τ = ~µ× ~B

• B-field of a long wire

B =
µ0I

2πr

Center of a ring wire

B =
µ0I

2r

Long solenoid
B = µ0nI

where n is the turn density.

• Ampere’s Law:
˛

B · dℓ = µ0Ienc

• Conductors do not transmit EM wave, thus ~E vector is reversed upon reflecting, B vector is increased
by a factor of 2 (by solving propogation of EM wave).

• Magnetic fields in matter:
B = µH = µ0(H +M) = µ0(H + χmH)

Diamagnetic↔ χm very small and negative. Paramagnetic, ↔ χm small and positive, inversely pro-
portional to the absolute temperature. Ferromagnetic ↔ χm positive, can be greater than 1. M is no
longer proportional to H .

• For solenoid and toroid, H = nI, n is the number density.

• Self inductance:

E = −Ldi
dt

L is in henries, 1H = 1V · S/A = 1J/A2 = 1 web/A

NΦ = LI

is the flux linkage. Inductance of solenoid:

L =
µN2A

c

• Induced e.m.f

|Es| = N

∣

∣

∣

∣

dΦB

dt

∣

∣

∣

∣

• Time constant for R − L circuit t = L/R. For an R − C constant t = RC. For an L − C circuit,
ω0 = 1/

√
LC.
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• XL = 2πfL is the inductive reactance. XC = 1/2πfC is the capacitive reactance. The impedance is
given by

Z =
√

R2 + (XL −XC)2 series

1

Z
=

[

(

1

R

)2

+

(

1

XC
− 1

XL

)2
]1/2

parallel

Current is maximized at resonance XL = ωL = XC = 1/ωC (there will be a lot of questions on this)

• Larmor formula for radiation

P =
µ0q

2a2

6πc
∝ q2a2

where a is the acceleration. Energy per unit area decreases as distance increases (inverse square
relation).

• Mean drift speed:

~v =
~J

ne

where n is the number of atoms per volume, J is current density I/A.

• Impedance of capacitor

Z =
1

iωC

Impedance of inductor
Z = iωL

• Magnetic field on axis of a circle of current

B =
µ0I

2

r2

(r2 + z2)3/2

• Bremsstrahlung: electromagnetic radiation produced by the deceleration of a charged particle.

• For incident wave reflecting off a plane, just set up a boundary value problem.

E⊥
1 − E⊥

2 = σ E
‖
1 = E

‖
2

and remember the Poynting vector
~S ∝ ~E × ~B

points in the direction of propagation.

E0 + Ereflected
0 = Etransmitted

0

• Lenz’s law: The idea is the system responds in a way to restore or at least attempt to restore to the
original state.

• Impedance matching to maximize power transfer or to prevent terminal-end reflection.

Zrad = Z∗
source

I(Xg) + I(XL) = IR

Generator impedance:
Rg + jXg

Local impedance:
RL + jXL

Z = R+ j(ωL+ 1/ωC)
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• Propagation vector ~k
~E(~r, t) = ~E0e

i(~k·~r−ωt)

~B(~r, t) =
1

c
| ~E(~r, t)|

(k̂ × n̂) =
1

c
k̂ × Ê

• No electric field inside a constant potential enclosure implies constant V inside.

• Hall effect
RH =

1

(p− n)e

can be used to test the nature of charge carrier. p for positive, n for negative.

• Lorentz force
~F = q( ~E + ~v × ~B)

• ∇ · (∇× ~H) = 0, ∇× (∇f) = 0

• One usually has cycloid motion whenever the electric and magnetic fields are perpendicular.

• Faraday’s law:

E = ~E · d~L = −dΦ
dt

• Visible spectrum in meters: Radio 103 (on the order of buildings); Microwave 10−2; Infrared 10−5;
visible 700-900 nm (10−6); UV 10−8(molecules); X-ray 10−10(atoms); gamma ray 10−12 (nuclei)

• Displacement field
~D = ǫ0 ~E + ~P = ǫ0 ~E + ǫ0χe

~E = ǫ0(1 + χe) ~E = ǫ ~E

Dielectric constant
ǫr = 1 + χe =

ǫ

ǫ0

σb = ~P · ~n
ρb = −~∇ · ~P

These are the bound charge densities. Also note

∇× ~D = ∇× ~P

is not necessarily zero.

• We have

~B =

{

µ0nIẑ

0

inside a solenoid
outside a solenoid

where n is density per length.

~B =

{

µ0nI
2πs φ̂

0

inside a toroid
outside

• Force per unit length between two wires:

f =
µ0

2π

I1I2
d
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• B = µ0I
4πs (sin θ2 − sin θ1) looks like the magnetic field due to a segment of wire, where θi is the angle

from the normal.

• Mutual inductance of two loops

M21 =
µ0

4π

˛ ˛

d~l1 · d~l2
rij

• Radiation pressure

P =
I

c
=

〈S〉
c

cos θ

It’s twice that for a perfect reflector.

• ∇ · ~D = ρf ∇× ~H = ~Jf + ∂ ~D
∂t , ∇ · ~B = 0, ∇× ~E = −∂ ~B

∂t .

• Boundary conditions:
ǫ1 ~E

⊥
1 − ǫ2 ~E

⊥
2 = σf ~B⊥

1 − ~B⊥
2 = 0

~E
‖
1 − ~E

‖
2 = 0, µ1

~B
‖
1 − µ2

~B
‖
2 = ~kf × n̂

• Biot-Savart law:

~B(~r) =
µ0I

4π

ˆ

d~l × ~r

|~r3|

• B-field at a center of a ring
~B =

µ0I

2r

• H = 1
µ0

B −M , Jb = ∇× ~M , ~kb = ~M × n̂

~B = µ ~H, µ = µ0(1 + χm)

3 Optics and Wave Phenomena

• Speed of propagation for waves

– Transverse on string, v =
√

T/ρ

– Longitudinal in liquid, v =
√

B/ρ, B is bulk modulus

– Longitudinal in solid, v =
√

Y/ρ,Y is Young’s modulus

– Longitudinal in gases, v =
√

γP/ρ

• For open pipe, fundamental frequency is v/2L where v is the speed of sound. For a closed pipe it is
(2n− 1)λ/4 = L. The idea is λf = v.

• Speed of sound in air is

v =

√

γkT

m
=

√

γRT

M
∝

√
T

where m is the mass of a molecule, and M is the molar mass in kg/mole.

• Resonant frequency of a rectangular drum

fmn =
ν

2

√

(

m

Lx

)2

+

(

n

Ly

)2
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• Doppler effect
f ′′ =

v

v + vsource

f

v is the velocity in the medium, vsource is the source velocity w.r.t. medium. In general,

flistener

v ± vlis
=

fsource

v ± vsource

The ± can be determined by examining if the frequency received is higher or lower.

• Lens optics:
1

p
+

1

q
=

1

f

Sign convention, real image has positive sign.

• Lens maker’s equation:
1

f
≈ (n− 1)

(

1

R1
− 1

R2

)

If R1 is positive, it’s convex, negative, concave. If R2 is positive, it’s concave, if it’s negative, it’s
convex.

• Young’s double slit:
d sin θ = mλ maxima

yd = mDλ d≪ D, θ small

d sin θ = (m+ 1
2 )λ minima

• If we have a slab of material with thickness t and refractive index n2, and the other medium is n1.

2n2t

n1λ1
= m+

1

2
max

2n2t

n1λ1
= m+ 1 min

• Conversely: if we have three layers of material, n1, nt, and n2 (top to bottom), then we have a couple
of different situations that would like to a maximum in intensity:

d =
mλ

2nt
n1 > nt > n2, n1 < nt < n2

d =
(m+ 1

2 )λ

2nt
n1 < nt > n2, n1 > nt < n2

I think it’s fair to assume that the minima occur when you replace m+ 1
2 with m and vice-versa.

• Diffraction grating
d sin θ = mλ

If incident at angle θi
d(sin θm + sin θi) = mλ

The overall result is an interference pattern modulated by single slit diffraction envelope. Intensity of
interference

I = I0
sin2(Nφ/2)

sin2(φ/2)
φ =

2π

λ
d sin θ

Minima occurs at Nφ/2 = π, . . . nπ where n/N /∈ Z. Maxima occurs at φ/2 = 0, π, 2π, . . . . Single-slit
envelope,

I = I0
sin2(φ′/2)

(φ′/2)2
φ′ =

2π

λ
w sin θ
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where w is the width of the slit. Overall,

I = I0
sin2(φ′/2) sin2(Nφ/2)

(φ′/2)2 sin2(φ/2)

• Bragg’s law of reflection
mλ = 2d sin θ

Make sure that θ is a glancing angle, not angle of incidence (relative to the plane). This gives the
angles for coherent and incoherent scattering from a crystal lattice.

• Index of refraction is defined as
n =

c

v
Again,

n1 sin θ1 = n2 sin θ2

• Brewster’s angle is the angle of incidence at which light with a particular polarization is perfectly
transmitted, no reflection.

tan θ =
n2

n1

• Diffraction again (more background info). The light diffracted by a grating is found by summing the
light diffracted from each of the elements, and is essentially a convolution of diffraction and interference
pattern. Fresnel diffraction is near field, and fraunhofer diffraction is far field.

• Diffraction limited imaging
d = 1.22λN

where N is the focal length/diameter. Angular resolution is

sin θ = 1.22
λ

D

where D is the lens aperture.

• Thin-film theory. Say the film has higher refractive index. Then there’s a phase change for reflection
off front surface, no phase change for reflection off back surface. Constructive interference thickness t:
2t = (n+ 1/2)λ. Destructive interference 2t = nλ.

• The key idea for many questions is to scrutinize path difference (optical)

• Some telescopes have two convex lenses, the objective and the eyepiece. For the telescope to work the
lenses have to be at a distance equal to the sum of their focal lengths, i.e. d = fobjective + feye:

M =

∣

∣

∣

∣

fobjective

feye

∣

∣

∣

∣

Magnifying power = max angular magnification = image size with lens/image size without lens.

• Microscopy

magnifying power =
β

α

• In Michelson interferometer a change of distance λ/2 of the optical path between the mirrors generally
results in a change of λ of optical path of light ray, thus potentially giving a cycle of bright→dark→bright
fringes.

• Mirror with curvature f ≈ R/2.

• Beats: the beat frequency is f1 − f2:

sin(2πf1t) + sin(2πf2t) = 2 cos

(

2π
f1 − f2

2
t

)

sin

(

2π
f1 + f2

2
t

)
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4 Thermodynamics and Statistical Mechanics

• PV diagram plots change in pressure wrt to volume for some process. The work done by the gas is
the area under the curve.

• If the cyclic process moves clockwise around the loop, then W will be positive, and it represents a heat
engine. If it moves counterclockwise, then W will be negative, and it represents a heat pump.

• The most basic definition of entropy is

dS ≥ dQ

T

• Heat transfer

– Conduction: rate

H =
∆Q

∆t
= −kAT2 − T1

L
,

dQ

dt
= −kAdT

dx

where A is area, k is a constant.

– Convection (probably not in GRE),

H =
∆Q

∆T
= hA(Ts − T∞)

where Ts is the surface temperature, h =convective heat-transfer coefficient. There are both
natural and forced convections.

• Radiation
Power = ǫσAT 4

ǫ =emissivity, ǫ ∈ [0, 1]. Net loss= ǫσA(T 4
emission − T 4

absorption)

• Wien’s displacement law: The absolute temperature of a blackbody and the peak wavelength of its
radiation are inversely proportional:

λmaxT = 2.898× 10−3 m·K

• Ideal gas law
PV = nRT = NkT

• Kinetic theory of gas

P =
1

3
ρv2rms vrms =

√

3kT

m
, v̄ =

√

8kT

πm
, vmost probable = vm =

√

2kT

m

• Maxwell-Boltzmann distribution (less likely to be in GRE), number of molecules with energy between
E and E + dE

N(E)dE =
2N√

π(kT )3/2

√
Ee−E/kT dE

f(v)d3v =
( m

2πkT

)3/2

e−mv2/2kT d3v

P (v) =

√

2

π

( m

kT

)3/2

v2e−mv2/2kT

(from which we can derive vm)

• Mean free path of a gas molecule of radius b

l =
1

4πTb2(N/V )
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• Van der Waals equation of state

(P + an2/V 2)(V − bn) = nRT

(P + aN2/V 2)(V −Nb) = NkT

• Adiabatic process
PV γ = const

For an ideal gas to expand adiabatically from (P1, V1) → (P2, V2), work done by the gas is

W =
P1V1 − P2V2

γ − 1

derived from W =
´ V2

V1

PdV .

• The greatest possible thermal efficiency of an engine operating between two heat reservoirs is that of
a Carnot engine, one that operates in the Carnot cycle. Max efficiency is

y⋆ = 1− Tcold

Thot

For the case of the refrigerator

κ =
Qcold

W
κCarnot =

(

Thot

Tcold

− 1

)−1

Carnot=adiabatic+isothermal, dS = 0. Otto=adiabatic+isobaric

y = 1− Td − Ta
Tc − Tb

• Dalton’s Law

P = P1 + P2 = (n1 + n2)
RT

V

• The critical isotherm is the line that just touches the critical liquid-vapor region
(

dP

dV

)

c

= 0

(

d2P

dV 2

)

c

= 0

with c the critical point. Equilibrium region is where pressure and chemical potential for the two states
of matter equal, usually a pressure constant region in the P − V diagram.

• In the Dulong-Petit law,

CV =
dE

dT
= 3R

• Laws of thermodynamics

– 0th: If two thermodynamic systems are each in thermal equilibrium with a third, then they are
in thermal equilibrium with each other.

– 1st: ∆U = Q−W (conservation of energy)

– 2nd: Entropy increases/heat flows from hot to cold/heat cannot be completely converted into
work.

– 3rd: As T → 0, S →constant minimum.

• Change in entropy for a system where specific heat and temperature are constant;

∆S = Nk ln
V

V0
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• Change in energy for an ideal gas:
∆U = CV ∆T

• Work done by ideal gas:

W =

ˆ

PdV =

{

NkT ln V2

V1

P∆V

Isothermal
Ideal gas, constant Pressure

• Partition function:

Z =
∑

i

e−βEi =

ˆ

dE Ω(E)e−βE =

ˆ

dE e−βA(E)

where A(E) is the Helmholtz free energy and Ω(E) is the degeneracy.

P (Ei) =
e−βEi

Z

S = k lnΩ = −k
∑

i

Pi lnPi

• Equipartition Theorem: (1) Classical canonical and (2) quadratic dependence: each particle has energy
1
2kT for each quadratic canonical degree of freedom.

• Internal energy
dU = TdS − PdV

Enthalpy
H = U + PV dH = TdS + V dP isobaric

Helmholtz
F = U − TS, dF = −SdT − PdV isothermal

Gibbs free energy
G = U − TS + PV, dG = −SdT + V dP

• Heat capacities:

CV =

(

∂U

∂T

)

V

= T

(

∂S

∂T

)

V

CP =

(

∂U

∂T

)

P

+ P

(

∂V

∂T

)

P

= T

(

∂S

∂T

)

P

=

(

∂H

∂T

)

P

• Fun stuff:

〈E〉 = − ∂

∂β
lnZ, F = −kT lnZ

S = k lnZ + 〈E〉/T, dS =

ˆ

dQ

T

Gibbs-Helmholtz equation.

U = F + TS = F − T

(

∂F

∂T

)

V

= −T 2

(

∂

∂T

)

V

(

F

T

)

• Availability of system
A = U + P0V − T0S

In natural change, A cannot increase.
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• Diatomic gas

U =
5

2
kT

• Maxwell Relations
(

∂T

∂V

)

S

= −
(

∂P

∂S

)

V

=
∂2U

∂S∂V
(

∂T

∂P

)

S

=

(

∂V

∂S

)

P

=
∂2H

∂S∂P
(

∂S

∂V

)

T

=

(

∂P

∂T

)

V

= − ∂2A

∂T∂V

−
(

∂S

∂P

)

T

=

(

∂V

∂T

)

P

=
∂2G

∂T∂P

• For ideal gas in adiabatic process, W = ∆U = 3
2Nk∆T

• Clockwise enclosed area in a P − V diagram is the work done by the gas in a cycle.

• Chemical potential

µ(T, V,N) =

(

∂F

∂N

)

T,V

At equilibrium µ is uniform, F achieves minimum.

• Pboson ∝ T 5/2, Pclassical ∝ T , Pfermion ∝ TF (very big). Tclassical ≫ Tboson

• A thermodynamic system in maximal probability state is stable.

• Both Debye and Einstein assume 3N independent Harmonic oscillators for lattice. Einstein took a
constant frequency

5 Quantum Mechanics

• Uncertainty principle

∆x∆p ≥ ~

2
, ∆E∆t ≥ ~

2

• Schrodinger equation

i~
∂Ψ

∂t
= − ~

2

2m
∇2Ψ+ VΨ

• Commutator relation:

[AB,C] = ABC − CAB = ABC −ACB +ACB − CAB = A[B,C] + [A,C]B

• De Broglie

λ =
h

p
=
hc

E
=

h√
2mkT

(The last equality is thermal)

• A one-dimensional problem has no degenerate states.

• Heisenberg’s uncertainty principle generalized:

∆A∆B ≥ 1

2
|〈[A,B]〉|
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• Infinite square well

ψn =

√

2

a
sin

nπx

a
, En =

n2π2
~
2

2ma2
, n ≥ 1

Delta-function well V = −αδ(x). Only one bound state, many scattering states.

ψ(x) =

√

mα

~
e−mα|x|/π2

, E = −mα
2

2~2

Shallow, narrow well, there is always at least one bound state.

• Selection rule
∆l = ±1, ∆ml = ±1 or 0, ∆j = ±1 or 0

Electric dipole radiation ⇔ ∆l = 0. Magnetic dipole or electric quadrupole transitions are “forbidden”
but do occur occasionally.

• Stimulated and spontaneous emission rate ∝ |p|2 where

p ≡ q〈ψb|z|ψa〉

The lifetime of an excited state is τ = (
∑

Ai)
−1 where Ai are spontaneous emission rates.

• Time-independent first order perturbation

E1
n = E0

n + 〈ψ0
n|H ′|ψ0

n〉, ψ1
n = ψ0

n +
∑

m 6=n

〈ψ0
m|H ′|ψ0

n〉
E0

n − E0
m

ψ0
m

• Quantum approximation of rotational energy

Erot =
~
2l(l + 1)

2I

• Fermi energy

EF = kTF ≃ 1

2
mv2

• Differential cross-section
dσ

dΩ
=

scattered flux/unit of solid angle
incident flux/unit of surface

• Intrinsic magnetic moment
~µ = γ~S, γ =

eg

2m

where g is the Lande g-factor. If m points up, ~µpoints down.

• Total cross section

σ =

ˆ

D(θ)dΩ, D(θ) =
dσ

dΩ

• Stark effect is the electrical analog to the Zeeman effect.

• Born-Oppenheimer approximation: the assumption that the electronic motion and the nuclear motion
in molecules can be separated, i.e.

ψmolecule = ψeψnuclei

• In Stern-Gerlach experiment, a beam of neutral silver atoms are sent through an inhomogeneous
magnetic field. Classically, nothing happens as the atoms are neutral with Larmor precession, the
beam would be deflected into a smear. But it actually deflects into 2s+ 1 beams, thus corroborating
with the fact electrons are at spin 1

2
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• Know the basic spherical harmonics

Y 0
0 =

√

1

4π
, Y ±1

1 = ∓
√

3

8π
sin θe±iφ, Y 0

1 =

√

3

4π
cos θ

• Probability density current

~J =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗) = ℜ

(

ψ∗ ~

im
∇ψ
)

• Laser operates by going from lower state to high state (population inversion), then falls back on a
metastable state in between (not all the way down due to selection rule).

• Neat identities:

〈O〉 =
ˆ

Ψ∗OΨdx, [f(x), p] = i~
∂f

∂x
, p = −i~∇

• Ehrenfest’s Theorem: expectation values obey classical laws.

m
d2〈x〉
dt2

=
d〈p〉
dt

=

〈

−∂V
∂x

〉

• If V (x) is even, ψ(x) can always be taken to be even or odd.

• More identities:

〈H〉 =
∞
∑

n=1

|cn|2En, δ(x) =
1

2π

ˆ ∞

−∞

eikxdk

• Tunneling shows exponential decay.

• The ground state of even potential is even and has no nodes.

• In stationary states, all expectation values are independent of t.

• Harmonic oscillators:

H = ~ω(a−a+ − 1
2 ) = ~ω(a+a− + 1

2 ), a± =
1√

2~mω
(mωx∓ ip)

[a−a+] = 1, N ≡ a+a−, Nψn = nψn

a+ψn =
√
n+ 1ψn+1, a−ψn =

√
nψn−1

ψn =
1√
n!
(a+)

nψ0, x =

√

~

2mω
(a+ + a−), p = i

√

~mω

2
(a+ − a−)

• Fourier transforms:

Φ(p, t) =
1√
2π~

ˆ ∞

−∞

e−px/~Ψ(x, t)dx

Ψ(x, t) =
1√
2π~

ˆ ∞

−∞

eipx/~Φ(p, t)dp

• Operators changing in time:
d〈Q〉
dt

=
i

~
〈[H,Q]〉+

〈

∂Q

∂t

〉

• Virial theorem, in stationary state

2〈T 〉 =
〈

x
dV

dx

〉
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• Hydrogen atom revisited:

En ∝ reduced mass

∝ Z2

∝ 1/n2

= −
[

m

2~2

(

e2

2πǫ0

)2
]

1

n2
=
E1

n2

En(Z) = Z2En

a(Z) =
a

Z

R(Z) = Z2R

Bohr radius a = 4πǫ0~
2/me2 = 0.528× 10−10 meters.

ψ100(r, θ, φ) =
1√
πa3

e−r/a

• Angular momentum
[Li, Lj ] = i~Lkǫijk

where ǫijk = 1 for even permutations, -1 for odd permutations, zero otherwise.

L± = Lx ± iLy, [L2, Li] = 0

L2fm
l = ~

2l(l + 1), Lzf
m
l = ~mfm

l

L±f
m
l = ~

√

(l ∓m)(l ±m+ 1)fm
l = ~

√

l(l + 1)−m(m± 1)fm
l

[Lz, x] = i~y, [Lz, px] = i~py, [Lz, y] = −i~x, [Lz, py] = −i~px

Lz =
~

i

∂

∂φ

• Spin,

S2 =
3

4
~
2

(

1 0
0 1

)

σx =

(

0 1
1 0

)

, σy =

(

0 −1
1 0

)

, σz =

(

1 0
0 −1

)

~S =
~

2
~σ

χ
(x)
+ =

(

1/
√
2

1/
√
2

)

, χ
(x)
− =

(

1/
√
2

−1/
√
2

)

〈S2
x〉 = 〈S2

y〉 = 〈S2
z 〉 =

~
2

4

• Clebsch-Gorden coefficients

|sm〉 =
∑

m1+m2=m

Cs1s2s
m1m2m|s1m1〉|s2m2〉

|s1m1〉|s2m2〉 =
∑

s

Cs1s2s
m1m2m|sm〉
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• Continuity equation

∇ · ~J = − ∂

∂t
|ψ|2

ˆ

S

~J · d~a = − d

dt

ˆ

V

|ψ|2d3~r

• Representation of angular momentum.
2s+1LJ

where s =spin, L =orbital, J =total. Hund’s rule: (1) State with highest spin will have lowest energy
given Pauli principle satisfied; (2) For given spin and anti-symmetrization highest L have lowest energy;
(3) Lowest level has J = |L− S|, if more than half-filled J = L+ S.

• Fermi gas
kF = (3ρπ2)1/3, ρ = Nq/V, vF =

√

2EF /m

Degeneracy pressure
P ∝ ρ5/3m−1

e m−5/3
p

• Particle distributions

n(ǫ) =











e−β(ǫ−µ)

(eβ(ǫ−µ) + 1)−1

(eβ(ǫ−µ) − 1)−1

Maxwell-Boltzmann
Fermi-Dirac

Bose-Einstein

Blackbody density

ρ(ω) =
~ω3

π2c3(e~ω/kT − 1)

• Fine structure→spin-orbit coupling. Relativistic correction α = 1/137.056. Then Lamb shift is from
the electric field, then Hyperfine structure due to magnetic interaction between electrons and protons,
then spin-spin coupling (21 cm line)

• Fine structure breaks degeneracy in l but still have j

• Fermi’s golden rule is a way to calculate the transition rate (probability of transition per unit time)
from one energy eigenstate of a quantum system into a continuum of energy eigenstates, due to a
perturbation.

• Full shell and close to a full shell configuration are more difficult to ionize.

• Larmor precession:
~Γ = ~µ× ~B = γ ~J × ~B

and we get ω = γB, where Γ is the torque, µ is the magnetic moment, and J is total angular momentum.

6 Atomic Physics

• ∆E = hf = ~ω = hc/λ. hc = 12.4 keV·Å = 1240 eV·nm, de Broglie wavelength λ = h/p.

• Emission due to transition from level n to level m

1

λ
= R

(

1

m2
− 1

n2

)

m = 1 Lyman series, m = 2 Balmer series.

R = 1.097× 107m−1, En = −13.6 eV
n2
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• Hydrogen model extended, Z =number of protons, quantities scale as

E ∼ Z2, λ ∼ 1

Z2

Reduced-mass correction to emission formula is

1

λ
=

RZ2

1 +m/M

(

1

n2
f

− 1

n2
i

)

where m is the mass of electron, M is the mass of the proton, m/M = 1/1836.

• Bohr postulate L = mvr = n~

• Zeeman effect: splitting of a spectral line into several components in the presence of a static magnetic
field.

• k series refers to the innermost shell (K, L, M , N) so transition to innermost shell.

E = −13.6(Z − 1)2
(

1− 1

n2
i

)

eV

where the (Z − 1)2 is a shielding approximation.

• Frank-Hertz Experiment: Electrons of a certain energy range can be scattered inelastically, and the
energy lost by electrons is discrete.

• Spectroscopic notation is a standard way to write down the angular momentum quantum number of a
state,

2s+1Lj

where s is the total spin quantum number, 2s+ 1 is the number of spin states, L refers to the orbital
angular momentum quantum number ℓ but is written as S, P,D, F, . . . for ℓ = 0, 1, 2, 3, . . . and j is the
total angular momentum quantum number. So for hydrogen we could have things like

2P 3

2

,2 P 1

2

(since s = 1/2 and ℓ = 1, spin up versus spin down).

7 Special Relativity

• Energy:
E2 = (pc)2 + (mc2)2

For massless particles, E = pc = hν

• Relativistic Doppler Effect

λ =

√

1± β

1∓ β
λ0

β = v/c. Sign is determined by whether source is moving away or closer.

• Space-time interval
∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2

• Lorentz transformation








ct′

x′

y′

z′









=









γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

















ct
x
y
z
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• Relativistic addition of velocities

u′x =
ux + v

1 + uxv/c2
, u′y =

uy
γ(1 + uxv/c2)

, u′z =
uz

γ(1 + uxv/c2)
, γ ≡ 1

√

1− β2

• Lorentz-Transformation of EM, parallel and perpendicular to direction o motion.

~E′
‖ = ~E‖, ~E′

⊥ = γ( ~E⊥ + ~v × ~B⊥)

~B′
‖ = ~B‖, ~B′

⊥ = γ( ~B⊥ − ~v × ~E⊥/c
2)

• Relativistic energy/momentum
E = γmc2, p = γmv

• In every closed system, the total relativistic energy and momentum are conserved.

• Spacelike separation means two events can happen at the same time, which requires

∆s2 = c2∆t2 −∆x2 < 0

• Transverse Doppler shift:

f =
f ′

√

1− β2
or f = f ′

√

1− β2

• Four-vectors can be useful. We can define

P =

(

E

c
,p

)

and the dot product

P2 =
E2

c2
− p2 = m2c2

to get
E2 = m2 + p2.

Remember, this mass is invariant, so we can equate the P vector at different times.

8 Laboratory Methods

• If measurements are independent (or intervals in a Poisson process are independent) both expected
value and variance increase linearly with time, so longer time can improve uncertainty, which is usually
defined as

σ

R
∝ 1√

t

• In Poisson distribution, σ =
√
x̄.

• Error analysis, estimating uncertainties. If you are sure the value is closer to 26 than to 25 or 27, then
record best estimate 26± 0.5.

• Propagation of uncertainties for sum of random and independent variables

δx =

√

∑

i

(δxi)2

If multiplication or divisions are involved, use fractional uncertainty:

δq

|q| =

√

√

√

√

∑

i

(

δxi
xi

)2
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• Experimental uncertainties can be revealed by repeating the measurements are called random errors;
those that cannot be revealed in this way are called systematic errors.

• If the the uncertainties are different for different measurements, we have

x̄ =

∑

(xi/σ
2
i )

∑

i(1/σi)
2

σ2
x̄ =

1
∑

i(1/σ
2
i )

9 Specialized Topics

• Photoelectric effect.
Ephoton = φ+Kmax

(or the sum of the work function and the kinetic energy).

• Compton scattering:

λ′ − λ =
h

mec
(1− cos θ)

where me is the mass of the atom: h/mec is the Compton wavelength of the electron, and λ′ is the
new wavelength.

• X-ray Bragg reflection
nλ = 2d sin θ

(compare to diffraction grating nλ = d sin θ)

• 1.602× 10−19J= e(1 V) = 1 eV.

• In solid-state physics, effective mass is

m∗ =
~
2

d2E/dk2

• Electronic filters: high pass means ω → ∞, Vin = Vout. Usually look at I = Vin/Z, Z = R+i(XL−XC),
XL = ωL, XC = 1/ωC.

• Band spectra is a term that refers to using EM waves to probe molecules.

• Solid state:

primitive cell =
unit cell

# of lattice points in a Bravais lattice

Simple cubic → 1 point, body-centered → 2 points, face-centered → 4 points.

• Resistivity of undoped semiconductor varies as 1/T .

• Nuclear physics: binding energy is a form of potential energy, convention is to take it as positive. It’s
the energy needed to separate into different constituents. It is usually subtracted for other energy to
tally total energy.

• Pair production refers to the creation of an elementary particle and its antiparticle. Usually need high
energy (at least the total mass).

• At low energies, photoelectric-effect dominates Compton scattering.

• Radioactivity: Beta decay
XA

Z → X
′A
Z+1 + β0

−1 + ν

Alpha:
XA

Z → X ′A−4
Z−2 + He42

Gamma
XA

Z → XA
Z + γ
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Deuteron decay (not natural)
XA

Z → XA−2
Z−1 + H2

1

Radioactivity usually follows Poisson distribution.

• Coaxial cable terminated at an end with characteristic impedance in order to avoid reflection of signals
from the terminated end of cable.

• Human eyes can only see things in motion up to ∼ 25 Hz.

• In magnetic field, e are more likely to be emitted in a direction opposite to the spin direction of the
decaying atom.

• Op-amp (operational amplifiers): if you only have two days to prepare for the GRE, this is not worth
the effort, maximum one question on this. Read “The Art of Electronics” to check this out.

• The specific heat of a superconductor jumps to a lower value at the critical temperature (resistivity
jumps too)

• Elementary particles: review the quarks, leptons, force carriers, generations, hadrons.

– Family number conserved

– Lepton number conserved

– Strangeness is conserved (except for weak interactions)

– Baryon number is conserved

• Internal conversion is a radioactive decay where an excited nucleus interacts with an electron in one of
the lower electron shells, causing the electron to be emitted from the atom. It is not beta decay.
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