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One of the main reasons we wanted to write a Physics GRE review book is that none
of the existing review materials address both general test-taking strategies and strategies
specific to physics problems. You can find general test-taking tips anywhere: hopefully
things like “don’t study the night before the exam” and “work through the easier problems
first, marking the harder ones to come back to later” are intimately familiar to you already.
One important thing to mention is the quarter-point wrong-answer penalty: this exists so
that random guessing has an expected value of zero, and thus eliminating even one answer
choice gives you a positive expectation if you guess randomly. However, random guessing
should be a last resort (especially because, with a sample size of 1 exam, expected value
arguments don’t really apply), and the tips and tricks detailed below will often make it
possible to narrow down the answer choices completely without ever actually solving the
problem from first principles!

1 Derive, don’t memorize

If you’re just beginning your GRE preparation, and you’ve started looking through your
freshman year textbook, you’re probably overwhelmed by the sheer number of formulas. If
you’re like most physics students, you probably don’t even remember learning many of them!
But for better or for worse, the Physics GRE is a test of outside knowledge, and you need
to know certain formulas to answer many of the questions. And the formula sheet provided
at the beginning of the test is worse than useless: numerical values of constants you’ll never
need, a couple random definitions, and three moments of inertia. Obviously we’re going to
need an efficient way to remember all the missing formulas.

Richard Feynman (famous 20th century physicist and co-inventor of quantum electrody-
namics) has a wonderful piece of advice on this sort of thing: “knowledge triangulation.” No
one can possibly remember all the formulas, but if you can remember a few key facts, you
can reconstruct most of the rest of your knowledge, and “triangulate” unknown facts from
known ones. The key to this is remembering the basic steps in the important derivations in
all the key areas tested on the physics GRE.

Try this: divide up your formulas into categories based on how involved the derivations
are. Class 1 would be the absolute basics, things like F = ma, expressions for kinetic energy
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(1
2
mv2 for translational, 1

2
Iω2 for rotational), and so on. Class 2 would be formulas which

you could quickly derive in a couple steps from the Class 1 formulas. This might include
formulas for recoil velocities in 1-dimensional elastic collisions where one mass is at rest
(apply conservation of momentum and energy) and the cyclotron frequency of a charged
particle in a magnetic field (use the fact that the magnetic field provides the centripetal
force required for uniform circular motion). Class 3 is any formula or equation that you
expect will take more than 2 or 3 lines of algebra to derive: normal mode frequencies for a
pair of coupled springs, 2nd order energy shifts in quantum mechanical perturbation theory,
and the like.

Now, focus your attention on memorizing the Class 1 formulas, and the steps in the
derivations that lead to the Class 2 formulas. Start a formula sheet containing the Class 3
formulas, adding them as you come across them in your studying, and memorize them as
you go. Also, include a sketch of the derivations of the Class 2 formulas, but don’t include
the formula itself. Your notes might look like this:

EM boundary conditions at a conductor: apply Gauss’s and Ampere’s law using in-
finitesimally thin pillboxes and loops

That way, every time you review your formula sheet, you’ll force yourself to rederive these
formulas. If you find you can’t do this after four or five tries, promote it to a Class 3 formula
and write it down.

Of course, this classification is a very individual process, and will depend strongly on
which subjects you consider your strengths or weaknesses. But a good target is to have no
more than 10 Class 3 formulas for the major subjects (classical mechanics, electricity and
magnetism), and no more than 5 Class 3 formulas for each of the smaller subject areas.
Anything else is probably overkill, assuming you’re familiar enough with the basics to know
the Class 1 formulas by heart. And despite what the GRE formula sheet may suggest,
moments of inertia are not worth memorizing. We would consider the formula I = mr2 for a
point mass a Class 1 formula, and everything else Class 2 (just integrate, or use the parallel
axis theorem).

You can go even further and develop mnemonics for memorizing Class 3 formulas by
treating them as Class 2 formulas, and doing a quick-and-dirty “derivation.” Here are a

couple examples. The formula for the Bohr radius of the hydrogen atom, a0 =
4πε0~2

mee2
, is both

completely ubiquitous in quantum mechanics, and a huge mess. But instead of memorizing
the expression, you can cheat slightly and derive it using mostly classical mechanics and a
little quantum mechanics. Apply the uncertainty principle in the form ∆r∆p ∼ ~ to the
Bohr model of the hydrogen atom, where we assume the electron executes uniform circular
motion in the Coulomb field of the proton. Putting ∆r = r and ∆p = p, and turning the ∼
sign into an = sign, we obtain precisely the Bohr radius. (Try it yourself!) Strictly speaking,
of course, this derivation is completely bogus: the p appearing in the uncertainty relation
should really be the radial momentum, the right-hand side should be ~/2, and setting ∆r = r
is dubious at best. However, if you just treat this derivation as a mnemonic, you have a
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2-line derivation of a Class 3 formula, which takes it off your list of formulas to memorize.
A simpler example, but one which may be a little too advanced for the Physics GRE, is
the Schwarzschild radius of a black hole. Treat light like a “particle” of mass m and kinetic
energy 1

2
mv2, and find the starting radius R for which the escape velocity from a body of

mass M is the speed of light v = c. You’ll find the mass m cancels out, and that light can
only escape to infinity for R > 2GM/c2, the Schwarzschild radius. Again, the right answer
for the wrong reasons, but it’s quick and it works.

Keep an eye out for mnemonics like this, and you should be able to keep your formula
sheet to a manageable size. That way you can devote more of your study time to reviewing
and doing practice problems, rather than cramming your brain full of formulas.

2 Dimensional analysis

Physical quantities have units. This may not seem like a profound statement, but it is an
extraordinarily powerful tool for getting order-of-magnitude answers to physical questions,
without ever doing involved computations. On the GRE, it offers an interesting alternative
problem-solving method thanks to the multiple-choice format. The very first thing you
should do when you see a tough-looking question is to scan the answer choices to see if they
all have the same units. If not, there’s a decent chance that only one of the answer choices
has the correct units, and by identifying the units you want for the problem in question, you
can get to the correct answer by dimensional analysis alone. Based on the tests released by
ETS, it appears that pure dimensional analysis problems were very common on older tests,
fell out of favor around 2000, but are making a comeback. Here’s an example similar to
answer choices which appeared on a 2008 test:

(A) h/f

(B) hf

(C) h/λ

(D) λf

(E) hλ

Without even knowing the question, only one of these choices can possibly be correct,
because they all have different units. A question this easy is relatively rare, though: you
might expect to see 5 or so per test, at most. A somewhat more common example is:

(A) R
√
l/g

(B) R
√
g/l

(C) R
√

2l/g
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(D) Rg/l

(E) R2l/2g

A quick scan shows that A and C have the same units, while all the others are different. So
at best, if we know which units we’re looking for, we’ve solved the problem, and at worst
we’re down to two choices, A and C.

Because dimensional analysis applies to nearly every problem on the GRE, it’s an excel-
lent fallback tool in case you forget exactly how to approach a problem, or draw a complete
blank. It pays to get very comfortable with computing units for quantities, so here’s an
example to practice with.

Example: Which of the following gives the uncertainty ∆x2 for the ground state of the
harmonic oscillator?

(A)
~

2mω

(B)
~2

mω

(C)
~ω
m

(D)
ω

2~m

(E)
~ω
m2

We’re looking for a quantity with units of (length)2. First, let’s do the dimensional
analysis the straightforward way, listing the dimensions of all the variables as powers of
mass M , length L, and time T , the three fundamental units in the SI system:

• ~: ML2T−1

• m: M

• ω: T−1

The most general combination we can form is ~ambωc, and we want this to have units of L2,
so we get a system of linear equations in a, b, and c that we can solve:

a+ b = 0

2a = 2

−a− c = 0.

It’s straightforward to see that a = 1, b = −1, and c = −1; in other words, ~/mω, choice A.
We’re off by a factor of two, but who cares: only choice A has the correct units. In point of
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fact, writing down the linear equations was probably a waste of time, since we could have
just as easily stared at the list of units for ~, m, and ω and determined that the quantity we
were looking for was ~/mω right away.

For an alternate method, we could have avoided the ugly units of ~ by remembering that
~ω has nice units of energy. One form of energy is kinetic energy, 1

2
mv2, so to get units of L2

we need to divide energy by one power of M and multiply by two powers of T . This gives

~ω × 1

m
× 1

ω2
=

~
mω

,

as before. Note how much faster this was than actually computing the uncertainty for the
harmonic oscillator, either by using operator methods or the position-space wavefunction!
Since this kind of dimensional analysis comes up so often, we strongly recommend coming
up with your own method for solving these dimensional equations. Some combination of
memorizing the MLT units for common constants, remembering useful combinations of
constants with nice units like q2/ε0, and mnemonic methods would be an excellent start.

3 Limiting cases

A careful analysis of limiting cases is one of the most efficient ways to check your work on
physics problems. This is especially true for the GRE, where you’ll often be able to hone in
on the correct answer choice by considering limiting cases, even when dimensional analysis
fails.

What exactly constitutes a “limiting case,” of course, depends on the problem. Some of
the more common ones include letting a quantity like a mass, velocity, or energy go to zero
or infinity, and seeing if the result makes sense in this limit. Here’s a simple example: say
you have a block of mass m on an inclined plane at an angle θ from the horizontal, and you
can’t remember whether the component of the gravitational force along the ramp is mg cos θ
or mg sin θ. Instead of fussing around with similar triangles, just consider what happens
when θ is either 0 or π/2. In the first case, the ramp is horizontal, so the block doesn’t slide;
in other words, gravity does’t act at all along the direction of the ramp. In the second case,
the ramp is vertical, so the entire force of gravity mg acts in downwards and the block just
falls straight down. Either of these tell you immediately that the force we’re looking for is
mg sin θ.

Let’s do a slightly more involved example.
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Consider the classic problem of a wheel of mass M and radius R up against a ledge of
height h. What horizontal force F do you have to apply at the axle to roll the wheel up
over the ledge? (Try this problem yourself before reading the rest of the discussion.) This
problem is solved most simply by considering the torques about the contact point with the
ledge; the ledge exerts some complicated force on the wheel, but we can ignore this entirely
because it exerts no torque about the contact point. The wheel will roll up if the torque due
to the horizontal force exceeds the torque due to gravity:

τg = Mg sinα = Mg

√
R2 − (R− h)2

R

τF = F sin(π/2− α) = F cosα = F
R− h
R

τF > τg =⇒ F > Mg

√
2Rh− h2
R− h

Now, let’s say we made a mistake calculating sinα, and wrote sinα =

√
R2 − h2
R

. This

gives F > Mg

√
R + h

R− h
. This sort of looks right: it has the right dimensions, and it goes to

infinity as h→ R, which makes sense (you’re never going to be able to push the wheel over
the ledge using just a sideways force if the ledge is as high as the radius). However, taking
the limiting case of h→ 0, we find F > Mg. This certainly doesn’t make sense: if the ledge
disappears, then any force, however small, will allow the wheel to keep rolling. So we know
we’ve made a mistake somewhere.

Checking limiting cases is an extremely powerful strategy if you’re running out of time
at the end of the test. Remember, eliminating even one answer choice gives you a positive
expected value for that question. If you can quickly identify the relevant limiting cases, and
check them against the answer choices, you can often eliminate up to three wrong answers
in under a minute.
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4 Numbers and estimation

Broadly speaking, there are two kinds of physicists: theorists and experimentalist. If you’re a
theorist, you’re probably more comfortable with formulas than numbers, and you might not
remember the last time you had to calculate an explicit temperature, energy, or pressure. But
a large part of the Physics GRE requires you to think like an experimentalist, estimating
rough orders of magnitudes for various physical quantities. Here we’ll talk about some
strategies for doing so.

First of all, there are some numbers you should just know cold. These are the numbers
that show up so often in real physics problems that if you haven’t already memorized them,
you will have after less than a few months of graduate research in the relevant field. Per-
versely, many of these are not the numbers that show up on the Table of Information on the
first page of the GRE. Here’s the most important example: the binding energy of hydrogen

is 13.6 eV. You could memorize the formula for the Bohr energies, En = − 1

n2

mee
4

2(4πε0)2~2
,

plug in all the constants given in the table, and find E1 after a ton of arithmetic. . . or you
can memorize this one number.

Actually, this number tells you quite a lot: if you remember the mass of the electron
is about 0.5 MeV/c2 (another number to memorize – see below), this means you can treat
the hydrogen atom non-relativistically, because the electron’s energy is much less than its
binding energy. (Well, you probably already knew the hydrogen-atom was non-relativistic.)
If you know that X-rays have energies of the order of keV, you know that hydrogen atom
transition energies are safely below this range, in the ultraviolet. And you know that atoms
close to hydrogen in the periodic table will have roughly similar ionization energies: more
specifically, the binding energy of each electron increases as the square of the nuclear charge
Z, so the ground-state energy of helium is about (13.6)(22)(2) ≈ 110 eV, and the binding
energy of lithium is about (13.6)(32)(3) ≈ 370 eV. To be clear, these numbers are just
approximations – you’ve probably treated the helium atom using the variational principle
in your quantum mechanics class, and you’ve seen the ground-state energy is somewhat less
than 110 eV. But these rough estimates are plenty for the GRE – in fact, estimating the
binding energy of lithium is a practice question on the Sample Question set released by ETS.

Other important numbers show up as commonly-used combinations of fundamental con-
stants. If you’re like us, you probably had to memorize the value for h in high school
chemistry – but when’s the last time you actually had to use the value for h by itself in a
calculation? If you’re calculating anything in quantum mechanics, you use ~, and if you’re
doing anything relativistic, you use ~c. These combinations are worth memorizing, because
they’re the ones that you’ll actually need. Similarly, Boltzmann’s constant k is almost never
used by itself, but always in combination with temperature. But if you remember that
room temperature is about 300 K, and 1K ≈ 1

40
eV, you can get the value if you need it.

When dealing with combinations of constants, equally important is remembering the units:
~c ≈ 200 MeV · fm has units of energy × distance, which tells you that the characteristic dis-
tance associated to an object with energy 0.5 MeV is (200/0.5)×10−15 m, or about 4×10−13

m: this is a rough estimate of the Compton wavelength of the electron. (Actually, this is off
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by a factor of 2π, but who cares? It’s good enough as an order of magnitude.)
Based on our experience reviewing past GRE’s, here is a list of the top 5 numbers to

memorize (in order of importance):

• 13.6 eV - energy of the ground state of hydrogen

• 511 keV - mass of the electron in units of c2

• 1.22 - first zero of one of the Bessel functions. This appears in the Rayleigh criterion,
D sin θ = 1.22λ

• 2.9× 10−3 m·K - Wien displacement law constant

• 2.7 K - temperature of the cosmic microwave background

You can almost certainly get by with just these numbers. Not included in this list are
other numbers you can derive in one or two short steps from numbers given in the Table of
Information, like ~c as discussed above.1

5 Answer types, a.k.a. what to remember in a formula

The Physics GRE is tricky. Compared to other tests of similar subject matter, like the AP
Physics test or the Physics section of the MCAT, the testmakers throw in answer choices
which are deliberately designed to mislead you. Being aware of the common patterns of
answer choices can help you avoid these traps, and can often suggest the most efficient
approach to a problem. In order of increasing difficulty, here are some patterns you should
be aware of.

• Answer choices with different dimensions. This was covered in the section on
dimensional analysis above, and these problems are some of the easiest because of the
possibility of eliminating many answer choices without actually doing any calculations.

• Order of magnitude. This was touched on in the section on estimation, and similar
to dimensional analysis questions, one can get pretty far just by knowing rough orders
of magnitude for common physical situations.

Example: The average intermolecular spacing of air molecules in a room at standard
temperature and pressure is

(A) 10−12 cm

(B) 10−9 cm

(C) 10−6 cm

1Be careful! The most recent GRE included hc on the formula sheet, but often ~c is the more useful
quantity.
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(D) 10−3 cm

(E) 1 cm

While you could try to calculate this quantity exactly, using the fact that one mole of
gas occupies 22.4 L at STP and so on, it’s best just to recognize that A is the scale of
nuclear diameters, B is the scale of atomic diameters, and E is macroscopic which just
seems incorrect. So by common sense, we’ve narrowed it down to C and D.

• “Which power of two?” This pattern is best illustrated by a couple of examples:

(A) 2

(B) 4

(C) 8

(D) 16

(E) 32

(A) 0

(B) a/3

(C) a/
√

3

(D) a

(E) 3a

While the first set is numeric and the second set is symbolic, they’re both testing the
same thing: do you know the correct power law for a given variable in a certain formula?
Often these answer choices will all have the same dimensions, so dimensional analysis
won’t help you. But the fact that the choices almost always involve nice numbers
suggests that memorizing the various constants which accompany formulas is mostly
useless: all that matters is the dependence on the various parameters in the problem.
As we’ve emphasized many times, this is especially apparent in the formula for the
Bohr energies, where the dependence on reduced mass, nuclear charge, and principal
quantum number are all important. On a similar note, if a formula has a simple power-
law dependence, such as the Rayleigh formula for small-particle scattering, it’s worth
simply committing it to memory without asking too many questions about where it
came from. This may not be great physics, but neither is the GRE!

• Same units, different limiting cases. This pattern might come from a problem
with an angle which can range from 0 to 90◦, two unequal masses m and M , or two
springs with different spring constants k1 and k2. But in any case, while dimensional
analysis isn’t helpful, taking limiting cases as discussed in the relevant section above
can often help narrow down the answer choices. This pattern lies right on the border
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between trying to do the problem from the beginning, and forgoing any calculations
and just using limiting cases instead. Use your best judgment based on which method
you think will be the fastest based on your own strengths and weaknesses.

• Same units, different numerical factors. This pattern, which looks like

(A) cos(l/d)

(B) cos(2l/d)

(C) cos(l/2d)

(D) cos(l2/d2)

(E) cos(l2/2d2)

is tricky, because dimensional analysis is useless, and limiting cases are almost useless.
Worse, many of the answer choices only differ by dividing instead of multiplying,
increasing the possibility that you land on a trap answer choice by an arithmetic
mistake. This pattern is a clue to slow down, work through the problem carefully, and
try not to refer to the answer choices at any point during your calculation.

• Random numbers. Sometimes, you’ll have to work out a problem numerically, and
all the answer choices will be numbers with no obvious relation to one another. This
arises most often in basic kinematics and mechanics problems, where luckily the physics
is not an issue – the strategy is just to work slowly and make sure you don’t make an
arithmetic mistake. Equally as important, many of the wrong answer choices are likely
correct answers to an intermediate step in the calculation, so just as mentioned above,
try not to refer to the answer choices until you’re absolutely through calculating. This
reduces the chance you’ll get distracted by a trap answer.

6 Fermi problems

How many piano tuners are there in New York City? This is a classic estimation problem
attributed to Enrico Fermi, and it’s interesting because it requires more than just a single
“educated guess”: a good solution will invoke several order-of-magnitude approximations
and combine them together using appropriate formulas. For instance, you might start by
estimating the population of New York City, then estimating the size of the average family to
get an approximate number of families, then multiply by a factor representing the proportion
of families that have a piano, and so on.

Whole Fermi problems as defined above are unlikely to show up on the GRE, simply
because they often require than 2-3 minutes to carry out all the approximations and arith-
metic. However, they are an excellent way to review your knowledge of important formulas
by applying them to a real-world problem. Furthermore, an intermediate calculation in a
Fermi problem (maybe involving only one approximation and one formula) is a classic GRE
question – see the section on “Estimation” for an example using atomic radii.
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OK, that’s enough talking: let’s get to an example. What is the number flux of solar
visible-spectrum photons arriving at Earth’s atmosphere? In layman’s terms, how bright does
the sun appear? (You might want to test your intuition by making an order-of-magnitude
guess at that number before continuing.) This is an excellent Fermi problem because it
brings in so many different formulas and concepts from several different areas of physics,
plus a good helping of geometry. Here’s how we could approach this problem:

1. Assume the sun is a black-body whose spectrum peaks in the visible range, and find
the number density of photons emitted using Wien’s Law and the Bose-Einstein dis-
tribution for photons.

2. Photon number is directly proportional to intensity, and intensity decreases as 1/r2,
so use the average Earth-Sun distance to find the intensity on a sphere at the radius
of Earth’s orbit.

3. Find the solid angle subtended by the Sun-facing surface of the earth, since only
photons in this solid angle will hit the Earth

Of course, this probably isn’t the only way to approach this problem, but it’s pretty straight-
forward and affords good practice with this style of information. Along the way we’ll compare
our estimated value with the true value and see how close we come at the end.

Step 1: We can justify the approximation about the sun’s spectrum just by looking
outside: the sun appears bright and mostly white, which means that our eyes receive a large
number of photons from all over the visible spectrum. Since the Planck distribution, which

is proportional to
ω3

e~ω/kT − 1
falls off rather sharply on either side of the maximum, if the

maximum were outside the visible spectrum, the Sun would appear either very red or very
blue. So we can safely assume the spectral maximum to be at the center of the visible
spectrum, approximately 500 nm. (The visible spectrum is about 300-800 nm, a range you
should be familiar with.) Using Wien’s displacement law λmax ≈ 3 × 10−3m · K/T , we find
the surface temperature of the Sun is about 6000 K. The actual temperature is 5778 K, with
nearly all the difference coming from using a more accurate value for Wien’s constant – not
bad so far!

Rest of calculation to follow . . .
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